Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
2.
Mol Cancer Ther ; 23(4): 577-588, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38359816

RESUMO

Treatments involving radiation and chemotherapy alone or in combination have improved patient survival and quality of life. However, cancers frequently evade these therapies due to adaptation and tumor evolution. Given the complexity of predicting response based solely on the initial genetic profile of a patient, a predetermined treatment course may miss critical adaptation that can cause resistance or induce new targets for drug and immunotherapy. To address the timescale for these evasive mechanisms, using a mouse xenograft tumor model, we investigated the rapidity of gene expression (mRNA), molecular pathway, and phosphoproteome changes after radiation, an HSP90 inhibitor, or combination. Animals received radiation, drug, or combination treatment for 1 or 2 weeks and were then euthanized along with a time-matched untreated group for comparison. Changes in gene expression occur as early as 1 week after treatment initiation. Apoptosis and cell death pathways were activated in irradiated tumor samples. For the HSP90 inhibitor and combination treatment at weeks 1 and 2 compared with Control Day 1, gene-expression changes induced inhibition of pathways including invasion of cells, vasculogenesis, and viral infection among others. The combination group included both drug-alone and radiation-alone changes. Our data demonstrate the rapidity of gene expression and functional pathway changes in the evolving tumor as it responds to treatment. Discovering these phenotypic adaptations may help elucidate the challenges in using sustained treatment regimens and could also define evolving targets for therapeutic efficacy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Xenoenxertos , Multiômica , Qualidade de Vida , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/radioterapia , Proteínas de Choque Térmico HSP90 , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biomolecules ; 13(10)2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37892181

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common brain tumor with an overall survival (OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT). PURPOSE: The primary goal of this study was to examine if the differential alteration in proteomic expression pre vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA as compared to standard-of-care CRT. The second goal was to explore the associations between the proteomic alterations in response to VPA/RT/TMZ correlated to patient outcomes. The third goal was to use the proteomic profile to determine the mechanism of action of VPA in this setting. MATERIALS AND METHODS: Serum obtained pre- and post-CRT was analyzed using an aptamer-based SOMAScan® proteomic assay. Twenty-nine patients received CRT plus VPA, and 53 patients received CRT alone. Clinical data were obtained via a database and chart review. Tests for differences in protein expression changes between radiation therapy (RT) with or without VPA were conducted for individual proteins using two-sided t-tests, considering p-values of <0.05 as significant. Adjustment for age, sex, and other clinical covariates and hierarchical clustering of significant differentially expressed proteins was carried out, and Gene Set Enrichment analyses were performed using the Hallmark gene sets. Univariate Cox proportional hazards models were used to test the individual protein expression changes for an association with survival. The lasso Cox regression method and 10-fold cross-validation were employed to test the combinations of expression changes of proteins that could predict survival. Predictiveness curves were plotted for significant proteins for VPA response (p-value < 0.005) to show the survival probability vs. the protein expression percentiles. RESULTS: A total of 124 proteins were identified pre- vs. post-CRT that were differentially expressed between the cohorts who received CRT plus VPA and those who received CRT alone. Clinical factors did not confound the results, and distinct proteomic clustering in the VPA-treated population was identified. Time-dependent ROC curves for OS and PFS for landmark times of 20 months and 6 months, respectively, revealed AUC of 0.531, 0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for protein expression, clinical factors, and the combination of protein expression and clinical factors, respectively, indicating that the proteome can provide additional survival risk discrimination to that already provided by the standard clinical factors with a greater impact on PFS. Several proteins of interest were identified. Alterations in GALNT14 (increased) and CCL17 (decreased) (p = 0.003 and 0.003, respectively, FDR 0.198 for both) were associated with an improvement in both OS and PFS. The pre-CRT protein expression revealed 480 proteins predictive for OS and 212 for PFS (p < 0.05), of which 112 overlapped between OS and PFS. However, FDR-adjusted p values were high, with OS (the smallest p value of 0.586) and PFS (the smallest p value of 0.998). The protein PLCD3 had the lowest p-value (p = 0.002 and 0.0004 for OS and PFS, respectively), and its elevation prior to CRT predicted superior OS and PFS with VPA administration. Cancer hallmark genesets associated with proteomic alteration observed with the administration of VPA aligned with known signal transduction pathways of this agent in malignancy and non-malignancy settings, and GBM signaling, and included epithelial-mesenchymal transition, hedgehog signaling, Il6/JAK/STAT3, coagulation, NOTCH, apical junction, xenobiotic metabolism, and complement signaling. CONCLUSIONS: Differential alteration in proteomic expression pre- vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA. Using pre- vs. post-data, prognostic proteins emerged in the analysis. Using pre-CRT data, potentially predictive proteins were identified. The protein signals and hallmark gene sets associated with the alteration in the proteome identified between patients who received VPA and those who did not, align with known biological mechanisms of action of VPA and may allow for the identification of novel biomarkers associated with outcomes that can help advance the study of VPA in future prospective trials.


Assuntos
Glioblastoma , Humanos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Estudos Retrospectivos , Proteoma , Proteômica , Antineoplásicos Alquilantes , Proteínas Hedgehog
4.
medRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662408

RESUMO

Background: The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants are associated with 'Intellectual Disability, Autosomal Dominant 57' (MRD57), a neurodevelopmental disorder (NDD) characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. Methods: A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a novel, heterozygous variant in TLK1 (c.1435C>G, p.Q479E) by genome sequencing (GS). Single cell gel electrophoresis, western blot, flow cytometry and RNA-seq were performed in patient-derived lymphoblast cell lines. In silico, biochemical and proteomic analysis were used to determine the functional impact of the p.Q479E variant and previously reported NDD-associated TLK1 variant, p.M566T. Results: Transcriptome sequencing in patient-derived cells confirmed expression of TLK1 transcripts carrying the p.Q479E variant and revealed alterations in genes involved in class switch recombination and cytokine signaling. Cells expressing the p.Q479E variant exhibited reduced cytokine responses and higher levels of spontaneous DNA damage but not increased sensitivity to radiation or DNA repair defects. The p.Q479E and p.M566T variants impaired kinase activity but did not strongly alter localization or proximal protein interactions. Conclusion: Our study provides the first functional characterization of TLK1 variants associated with NDDs and suggests potential involvement in central nervous system and immune system development. Our results indicate that, like TLK2 variants, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.

5.
Front Oncol ; 13: 1127645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637066

RESUMO

Background: Glioblastomas (GBM) are rapidly progressive, nearly uniformly fatal brain tumors. Proteomic analysis represents an opportunity for noninvasive GBM classification and biological understanding of treatment response. Purpose: We analyzed differential proteomic expression pre vs. post completion of concurrent chemoirradiation (CRT) in patient serum samples to explore proteomic alterations and classify GBM by integrating clinical and proteomic parameters. Materials and methods: 82 patients with GBM were clinically annotated and serum samples obtained pre- and post-CRT. Serum samples were then screened using the aptamer-based SOMAScan® proteomic assay. Significant traits from uni- and multivariate Cox models for overall survival (OS) were designated independent prognostic factors and principal component analysis (PCA) was carried out. Differential expression of protein signals was calculated using paired t-tests, with KOBAS used to identify associated KEGG pathways. GSEA pre-ranked analysis was employed on the overall list of differentially expressed proteins (DEPs) against the MSigDB Hallmark, GO Biological Process, and Reactome databases with weighted gene correlation network analysis (WGCNA) and Enrichr used to validate pathway hits internally. Results: 3 clinical clusters of patients with differential survival were identified. 389 significantly DEPs pre vs. post-treatment were identified, including 284 upregulated and 105 downregulated, representing several pathways relevant to cancer metabolism and progression. The lowest survival group (median OS 13.2 months) was associated with DEPs affiliated with proliferative pathways and exhibiting distinct oppositional response including with respect to radiation therapy related pathways, as compared to better-performing groups (intermediate, median OS 22.4 months; highest, median OS 28.7 months). Opposite signaling patterns across multiple analyses in several pathways (notably fatty acid metabolism, NOTCH, TNFα via NF-κB, Myc target V1 signaling, UV response, unfolded protein response, peroxisome, and interferon response) were distinct between clinical survival groups and supported by WGCNA. 23 proteins were statistically signficant for OS with 5 (NETO2, CST7, SEMA6D, CBLN4, NPS) supported by KM. Conclusion: Distinct proteomic alterations with hallmarks of cancer, including progression, resistance, stemness, and invasion, were identified in serum samples obtained from GBM patients pre vs. post CRT and corresponded with clinical survival. The proteome can potentially be employed for glioma classification and biological interrogation of cancer pathways.

6.
Radiat Res ; 200(3): 266-280, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527359

RESUMO

Whole- or partial-body exposure to ionizing radiation damages major organ systems, leading to dysfunction on both acute and chronic timescales. Radiation medical countermeasures can mitigate acute damages and may delay chronic effects when delivered within days after exposure. However, in the event of widespread radiation exposure, there will inevitably be scarce resources with limited countermeasures to distribute among the affected population. Radiation biodosimetry is necessary to separate exposed from unexposed victims and determine those who requires the most urgent care. Blood-based, microRNA signatures have great potential for biodosimetry, but the affected population in such a situation will be genetically heterogeneous and have varying miRNA responses to radiation. Thus, there is a need to understand differences in radiation-induced miRNA expression across different genetic backgrounds to develop a robust signature. We used inbred mouse strains C3H/HeJ and BALB/c mice to determine how accurate miRNA in blood would be in developing markers for radiation vs. no radiation, low dose (1 Gy, 2 Gy) vs. high dose (4 Gy, 8 Gy), and high risk (8 Gy) vs. low risk (1 Gy, 2 Gy, 4 Gy). Mice were exposed to whole-body doses of 0 Gy, 1 Gy, 2 Gy, 4 Gy, or 8 Gy of X rays. MiRNA expression changes were identified using NanoString nCounter panels on blood RNA collected 1, 2, 3 or 7 days postirradiation. Overall, C3H/HeJ mice had more differentially expressed miRNAs across all doses and timepoints than BALB/c mice. The highest amount of differential expression occurred at days 2 and 3 postirradiation for both strains. Comparison of C3H/HeJ and BALB/c expression profiles to those previously identified in C57BL/6 mice revealed 12 miRNAs that were commonly expressed across all three strains, only one of which, miR-340-5p, displayed a consistent regulation pattern in all three miRNA data. Notably multiple Let-7 family members predicted high-dose and high-risk radiation exposure (Let-7a, Let-7f, Let-7e, Let-7g, and Let-7d). KEGG pathway analysis demonstrated involvement of these predicted miRNAs in pathways related to: Fatty acid metabolism, Lysine degradation and FoxO signaling. These findings indicate differences in the miRNA response to radiation across various genetic backgrounds, and highlights key similarities, which we exploited to discover miRNAs that predict radiation exposure. Our study demonstrates the need and the utility of including multiple animal strains in developing and validating biodosimetry diagnostic signatures. From this data, we developed highly accurate miRNA signatures capable of predicting exposed and unexposed subjects within a genetically heterogeneous population as quickly as 24 h of exposure to radiation.


Assuntos
MicroRNAs , Humanos , Camundongos , Animais , MicroRNAs/genética , Irradiação Corporal Total/efeitos adversos , Biomarcadores/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos C3H
7.
BMC Med Genomics ; 16(1): 168, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454191

RESUMO

Cancer researchers often seek user-friendly interactive tools for validation, exploration, analysis, and visualization of molecular profiles in cancer patient samples. To aid researchers working on the both low- and high-grade gliomas, we developed Glioma-BioDP, a web tool for exploration and visualization of RNA and protein expression profiles of interest in these tumor types. Glioma-BioDP is user friendly application that include expression data from both the low- and high-grade glioma patient samples from The Cancer Genome Atlas and enabled querying by mRNA, microRNA, and protein level expression data from Illumina HiSeq and RPPA platforms respectively. Glioma-BioDP provides advance query interface and enables users to explore the association of genes, proteins, and miRNA expression with molecular and/or histological subtypes of gliomas, surgical resection status and survival. The prognostic significance and visualization of the selected expression profiles can be explored using interactive utilities provided. This tool may also enable validation and generation of new hypotheses of novel therapies impacting gliomas that aid in personalization of treatment for optimum outcomes.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/metabolismo , Prognóstico , MicroRNAs/genética , Bases de Dados Factuais
8.
Nucleic Acids Res ; 51(13): 6754-6769, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37309898

RESUMO

The Sirtuin family of NAD+-dependent enzymes plays an important role in maintaining genome stability upon stress. Several mammalian Sirtuins have been linked directly or indirectly to the regulation of DNA damage during replication through Homologous recombination (HR). The role of one of them, SIRT1, is intriguing as it seems to have a general regulatory role in the DNA damage response (DDR) that has not yet been addressed. SIRT1-deficient cells show impaired DDR reflected in a decrease in repair capacity, increased genome instability and decreased levels of γH2AX. Here we unveil a close functional antagonism between SIRT1 and the PP4 phosphatase multiprotein complex in the regulation of the DDR. Upon DNA damage, SIRT1 interacts specifically with the catalytical subunit PP4c and promotes its inhibition by deacetylating the WH1 domain of the regulatory subunits PP4R3α/ß. This in turn regulates γH2AX and RPA2 phosphorylation, two key events in the signaling of DNA damage and repair by HR. We propose a mechanism whereby during stress, SIRT1 signaling ensures a global control of DNA damage signaling through PP4.


Assuntos
Dano ao DNA , Sirtuína 1 , Animais , Humanos , Mamíferos/metabolismo , Monoéster Fosfórico Hidrolases , Fosforilação , Transdução de Sinais , Sirtuína 1/metabolismo
9.
medRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205576

RESUMO

Background: Patients with localized prostate cancer have historically been assigned to clinical risk groups based on local disease extent, serum prostate specific antigen (PSA), and tumor grade. Clinical risk grouping is used to determine the intensity of treatment with external beam radiotherapy (EBRT) and androgen deprivation therapy (ADT), yet a substantial proportion of patients with intermediate and high risk localized prostate cancer will develop biochemical recurrence (BCR) and require salvage therapy. Prospective identification of patients destined to experience BCR would allow treatment intensification or selection of alternative therapeutic strategies. Methods: Twenty-nine individuals with intermediate or high risk prostate cancer were prospectively recruited to a clinical trial designed to profile the molecular and imaging features of prostate cancer in patients undergoing EBRT and ADT. Whole transcriptome cDNA microarray and whole exome sequencing were performed on pretreatment targeted biopsy of prostate tumors (n=60). All patients underwent pretreatment and 6-month post EBRT multiparametric MRI (mpMRI), and were followed with serial PSA to assess presence or absence of BCR. Genes differentially expressed in the tumor of patients with and without BCR were investigated using pathways analysis tools and were similarly explored in alternative datasets. Differential gene expression and predicted pathway activation were evaluated in relation to tumor response on mpMRI and tumor genomic profile. A novel TGF-ß gene signature was developed in the discovery dataset and applied to a validation dataset. Findings: Baseline MRI lesion volume and PTEN/TP53 status in prostate tumor biopsies correlated with the activation state of TGF-ß signaling measured using pathway analysis. All three measures correlated with the risk of BCR after definitive RT. A prostate cancer-specific TGF-ß signature discriminated between patients that experienced BCR vs. those that did not. The signature retained prognostic utility in an independent cohort. Interpretation: TGF-ß activity is a dominant feature of intermediate-to-unfavorable risk prostate tumors prone to biochemical failure after EBRT with ADT. TGF-ß activity may serve as a prognostic biomarker independent of existing risk factors and clinical decision-making criteria. Funding: This research was supported by the Prostate Cancer Foundation, the Department of Defense Congressionally Directed Medical Research Program, National Cancer Institute, and the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

10.
Endocrine ; 79(1): 171-179, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370152

RESUMO

PURPOSE: To understand prognostic immune cell infiltration signatures in neuroendocrine neoplasms (NENs), particularly pheochromocytoma and paraganglioma (PCPG), we analyzed tumor transcriptomic data from The Cancer Genome Atlas (TCGA) and other published tumor transcriptomic data of NENs. METHODS: We used CIBERSORT to infer immune cell infiltrations from bulk tumor transcriptomic data from PCPGs, in comparison to gastroenteropancreatic neuroendocrine tumors (GEPNETs) and small cell lung carcinomas (SCLCs). PCPG immune signature was validated with NanoString immune panel in an independent cohort. Unsupervised clustering of the immune infiltration scores from CIBERSORT was used to find immune clusters. A prognostic immune score model for PCPGs and the other NENs were calculated as a linear combination of the estimated infiltration of activated CD8+/CD4+ T cells, activated NK cells, and M0 and M2 macrophages. RESULTS: In PCPGs, we found five dominant immune clusters, associated with M2 macrophages, monocytes, activated NK cells, M0 macrophages and regulatory T cells, and CD8+/CD4+ T cells respectively. Non-metastatic tumors were associated with activated NK cells and metastatic tumors were associated with M0 macrophages and regulatory T cells. In GEPNETs and SCLCs, M0 macrophages and regulatory T cells were associated with unfavorable outcomes and features, such as metastasis and high-grade tumors. The prognostic immune score model for PCPGs and the NENs could predict non-aggressive and non-metastatic diseases. In PCPGs, the immune score was also an independent predictor of metastasis-free survival in a multivariate Cox regression analysis. CONCLUSION: The transcriptomic immune signature in PCPG correlates with clinical features like metastasis and prognosis.


Assuntos
Neoplasias das Glândulas Suprarrenais , Tumores Neuroendócrinos , Paraganglioma , Feocromocitoma , Humanos , Feocromocitoma/genética , Tumores Neuroendócrinos/genética , Paraganglioma/genética , Neoplasias das Glândulas Suprarrenais/genética , Prognóstico , Biomarcadores Tumorais
11.
Cancer Cell Int ; 22(1): 389, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482431

RESUMO

BACKGROUND: The invasive nature of GBM combined with the diversity of brain microenvironments creates the potential for a topographic heterogeneity in GBM radioresponse. Investigating the mechanisms responsible for a microenvironment-induced differential GBM response to radiation may provide insights into the molecules and processes mediating GBM radioresistance. METHODS: Using a model system in which human GBM stem-like cells implanted into the right striatum of nude mice migrate throughout the right hemisphere (RH) to the olfactory bulb (OB), the radiation-induced DNA damage response was evaluated in each location according to γH2AX and 53BP1 foci and cell cycle phase distribution as determined by flow cytometry and immunohistochemistry. RNAseq was used to compare transcriptomes of tumor cells growing in the OB and the RH. Protein expression and neuron-tumor interaction were defined by immunohistochemistry and confocal microscopy. RESULTS: After irradiation, there was a more rapid dispersal of γH2AX and 53BP1 foci in the OB versus in the RH, indicative of increased double strand break repair capacity in the OB and consistent with the OB providing a radioprotective niche. With respect to the cell cycle, by 6 h after irradiation there was a significant loss of mitotic tumor cells in both locations suggesting a similar activation of the G2/M checkpoint. However, by 24 h post-irradiation there was an accumulation of G2 phase cells in the OB, which continued out to at least 96 h. Transcriptome analysis showed that tumor cells in the OB had higher expression levels of DNA repair genes involved in non-homologous end joining and genes related to the spindle assembly checkpoint. Tumor cells in the OB were also found to have an increased frequency of soma-soma contact with neurons. CONCLUSION: GBM cells that have migrated to the OB have an increased capacity to repair radiation-induced double strand breaks and altered cell cycle regulation. These results correspond to an upregulation of genes involved in DNA damage repair and cell cycle control. Because the murine OB provides a source of radioresistant tumor cells not evident in other experimental systems, it may serve as a model for investigating the mechanisms mediating GBM radioresistance.

12.
Sci Rep ; 12(1): 19941, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402833

RESUMO

Recent and past research have highlighted the importance of the endothelium in the manifestation of radiation injury. Our primary focus is on medical triage and management following whole body or partial-body irradiation. Here we investigated the usability of endothelial cells' radiation response for biodosimetry applications. We profiled the transcriptome in cultured human endothelial cells treated with increasing doses of X-rays. mRNA expression changes were useful 24 h and 72 h post-radiation, microRNA and lncRNA expression changes were useful 72 h after radiation. More mRNA expressions were repressed than induced while more miRNA and lncRNA expressions were induced than repressed. These novel observations imply distinct radiation responsive regulatory mechanisms for coding and non-coding transcripts. It also follows how different RNA species should be explored as biomarkers for different time-points. Radiation-responsive markers which could classify no radiation (i.e., '0 Gy') and dose-differentiating markers were also predicted. IPA analysis showed growth arrest-related processes at 24 h but immune response coordination at the 72 h post-radiation. Collectively, these observations suggest that endothelial cells have a precise dose and time-dependent response to radiation. Further studies in the laboratory are examining if these differences could be captured in the extracellular vesicles released by irradiated endothelial cells.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , MicroRNAs/genética , RNA Mensageiro/genética , Células Endoteliais , Relação Dose-Resposta à Radiação , Radiação Ionizante , Biomarcadores
13.
Biomolecules ; 12(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139042

RESUMO

Sex differences are increasingly being explored and reported in oncology, and glioma is no exception. As potentially meaningful sex differences are uncovered, existing gender-derived disparities mirror data generated in retrospective and prospective trials, real-world large-scale data sets, and bench work involving animals and cell lines. The resulting disparities at the data level are wide-ranging, potentially resulting in both adverse outcomes and failure to identify and exploit therapeutic benefits. We set out to analyze the literature on women's data disparities in glioma by exploring the origins of data in this area to understand the representation of women in study samples and omics analyses. Given the current emphasis on inclusive study design and research, we wanted to explore if sex bias continues to exist in present-day data sets and how sex differences in data may impact conclusions derived from large-scale data sets, omics, biospecimen analysis, novel interventions, and standard of care management.


Assuntos
Glioma , Caracteres Sexuais , Animais , Feminino , Glioma/genética , Glioma/terapia , Humanos , Masculino , Estudos Prospectivos , Publicações , Estudos Retrospectivos
14.
Aging (Albany NY) ; 14(19): 7692-7717, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36173617

RESUMO

Radiation-induced pulmonary fibrosis (RIPF), a late adverse event of radiation therapy, is characterized by infiltration of inflammatory cells, progressive loss of alveolar structure, secondary to the loss of pneumocytes and accumulation of collagenous extracellular matrix, and senescence of alveolar stem cells. Differential susceptibility to lung injury from radiation and other toxic insults across mouse strains is well described but poorly understood. The accumulation of alternatively activated macrophages (M2) has previously been implicated in the progression of lung fibrosis. Using fibrosis prone strain (C57L), a fibrosis-resistant strain (C3H/HeN), and a strain with intermediate susceptibility (C57BL6/J), we demonstrate that the accumulation of M2 macrophages correlates with the manifestation of fibrosis. A comparison of primary macrophages derived from each strain identified phenotypic and functional differences, including differential expression of NADPH Oxidase 2 and production of superoxide in response to M2 polarization and activation. Further, the sensitivity of primary AECII to senescence after coculture with M2 macrophages was strain dependent and correlated to observations of sensitivity to fibrosis and senescence in vivo. Taken together, these data support that the relative susceptibility of different strains to RIPF is closely related to distinct senescence responses induced through pulmonary M2 macrophages after thoracic irradiation.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , NADPH Oxidase 2/metabolismo , Superóxidos/metabolismo , Camundongos Endogâmicos C3H , Fibrose Pulmonar/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Lesão Pulmonar/metabolismo
15.
Adv Radiat Oncol ; 7(5): 100902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847548

RESUMO

Purpose: Optimal management of patients with prostate cancer (PCa) to achieve bowel and bladder reproducibility for radiation therapy (RT) and the appropriate planning target volume (PTV) expansions for use with modern image guidance is uncertain. We surveyed American Society of Radiation Oncology radiation oncologists to ascertain practice patterns for definitive PCa RT with respect to patient instructions and set up, daily image guidance, and subsequent PTV expansions. Methods and Materials: A pattern of practice survey was sent to American Society of Radiation Oncology radiation oncologists who self-identified as specializing in PCa. Respondents identified the fractionation regimens routinely used, and their practices regarding diet, bowel, and bladder instructions for patients with PCa before RT simulation and throughout treatment. Questions regarding PTV margins, daily set up practices, and use of image guidance were included. Results: Of 190 respondents, 158 reported using conventional fractionation (CFx), 49 moderate hypofractionation (MHFx), and 61 stereotactic body radiation therapy (SBRT). Diet modifications during RT were advised by 84% of respondents, treatment with full bladder by 96%, and bowel instructions by 78%. Prescription of bowel medication was higher for respondents using SBRT (95.1%) versus those using CFx/MHFx (55.1%; 34.7%). The most common implantable device reported was fiducial markers, with increased use in SBRT (86.0%; 68.9%) versus CFx/MHFx. Cone beam computed tomography was the most common daily imaging technique across fractionation regimens. SBRT showed correlation between PTV margin expansions, fiducial marker use, and image guidance. Conclusions: Survey results indicate heterogeneity in treatment modality, dose, patient instructions, and PTV expansions used by radiation oncologists in the treatment of patients with PCa. Further investigation to define appropriate patient instructions on bowel preparation to maximize target reproducibility in PCa is needed, as is continued guidance on evidence-based approaches for image guidance and PTV margin selection.

16.
Sci Rep ; 12(1): 12333, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853961

RESUMO

In a mass radiation exposure, the healthcare system may rely on differential expression of miRNA to determine exposure and effectively allocate resources. To this end, miRNome analysis was performed on non-human primate serum after whole thorax photon beam irradiation of 9.8 or 10.7 Gy with dose rate 600 cGy/min. Serum was collected up to 270 days after irradiation and sequenced to determine immediate and delayed effects on miRNA expression. Elastic net based GLM methods were used to develop models that predicted the dose vs. controls at 81% accuracy at Day 15. A three-group model at Day 9 achieved 71% accuracy in determining if an animal would die in less than 90 days, between 90 and 269 days, or survive the length of the study. At Day 21, we achieved 100% accuracy in determining whether an animal would later develop pleural effusion. These results demonstrate the potential ability of miRNAs to determine thorax partial-body irradiation dose and forecast survival or complications early following whole thorax irradiation in large animal models. Future experiments incorporating additional doses and independent animal cohorts are warranted to validate these results. Development of a serum miRNA assay will facilitate the administration of medical countermeasures to increase survival and limit normal tissue damage following a mass exposure.


Assuntos
MicroRNAs , Exposição à Radiação , Animais , Biomarcadores , Relação Dose-Resposta à Radiação , Macaca mulatta , MicroRNAs/genética , Exposição à Radiação/análise , Irradiação Corporal Total/efeitos adversos
17.
Mol Cancer Ther ; 21(9): 1406-1414, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732578

RESUMO

A fundamental component of cellular radioresponse is the translational control of gene expression. Because a critical regulator of translational control is the eukaryotic translation initiation factor 4F (eIF4F) cap binding complex, we investigated whether eIF4A, the RNA helicase component of eIF4F, can serve as a target for radiosensitization. Knockdown of eIF4A using siRNA reduced translational efficiency, as determined from polysome profiles, and enhanced tumor cell radiosensitivity as determined by clonogenic survival. The increased radiosensitivity was accompanied by a delayed dispersion of radiation-induced γH2AX foci, suggestive of an inhibition of DNA double-strand break repair. Studies were then extended to (-)-SDS-1-021, a pharmacologic inhibitor of eIF4A. Treatment of cells with the rocaglate (-)-SDS-1-021 resulted in a decrease in translational efficiency as well as protein synthesis. (-)-SDS-1-021 treatment also enhanced the radiosensitivity of tumor cell lines. This (-)-SDS-1-021-induced radiosensitization was accompanied by a delay in radiation-induced γH2AX foci dispersal, consistent with a causative role for the inhibition of double-strand break repair. In contrast, although (-)-SDS-1-021 inhibited translation and protein synthesis in a normal fibroblast cell line, it had no effect on radiosensitivity of normal cells. Subcutaneous xenografts were then used to evaluate the in vivo response to (-)-SDS-1-021 and radiation. Treatment of mice bearing subcutaneous xenografts with (-)-SDS-1-021 decreased tumor translational efficiency as determined by polysome profiles. Although (-)-SDS-1-021 treatment alone had no effect on tumor growth, it significantly enhanced the radiation-induced growth delay. These results suggest that eIF4A is a tumor-selective target for radiosensitization.


Assuntos
Fator de Iniciação 4F em Eucariotos , Neoplasias , Tolerância a Radiação , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Fator de Iniciação 4F em Eucariotos/antagonistas & inibidores , Humanos , Camundongos , Neoplasias/radioterapia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Brachytherapy ; 21(4): 442-450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35523680

RESUMO

PURPOSE/OBJECTIVE(S): This study describes the pattern of failure in patients with biochemical (BCR) recurrence after low-dose-rate (LDR) brachytherapy as a component of definitive treatment for prostate cancer. METHODS: Patients with BCR after LDR brachytherapy ± external beam radiation therapy (EBRT) were enrolled on prospective IRB approved advanced imaging protocols. Patients underwent 3T multiparametric MRI (mpMRI); a subset underwent prostate specific membrane antigen (PSMA)-based PET/CT. Pathologic confirmation was obtained unless contraindicated. RESULTS: Between January 2011 and April 2021, 51 patients with BCR after brachytherapy (n = 36) or brachytherapy + EBRT (n = 15) underwent mpMRI and were included in this analysis. Of 38 patients with available dosimetry, only two had D90<90%. The prostate and seminal vesicles were a site of failure in 66.7% (n = 34) and 39.2% (n = 20), respectively. PET/CT (n = 32 patients) more often identified lesions pelvic lymph nodes (50%; n = 16) and distant metastases (18.8%; n = 6), than mpMRI. Isolated nodal disease (9.8%; n = 5) and distant metastases (n = 1) without local recurrence were uncommon. Recurrence within the prostate was located in the transition zone in 48.5%, central or midline in 45.5%, and anterior in 36.4% of patients. CONCLUSION: In this cohort of patients with BCR after LDR brachytherapy ± EBRT, the predominant recurrence pattern was local (prostate ± seminal vesicles) with frequent occurrence in the anterior prostate and transition zone. mpMRI and PSMA PET/CT provided complementary information to localize sites of recurrence, with PSMA PET/CT often confirming mpMRI findings and identifying occult nodal or distant metastases.


Assuntos
Braquiterapia , Neoplasias da Próstata , Braquiterapia/métodos , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Prospectivos , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia
19.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565358

RESUMO

The development and advancement of aptamer technology has opened a new realm of possibilities for unlocking the biocomplexity available within proteomics. With ultra-high-throughput and multiplexing, alongside remarkable specificity and sensitivity, aptamers could represent a powerful tool in disease-specific research, such as supporting the discovery and validation of clinically relevant biomarkers. One of the fundamental challenges underlying past and current proteomic technology has been the difficulty of translating proteomic datasets into standards of practice. Aptamers provide the capacity to generate single panels that span over 7000 different proteins from a singular sample. However, as a recent technology, they also present unique challenges, as the field of translational aptamer-based proteomics still lacks a standardizing methodology for analyzing these large datasets and the novel considerations that must be made in response to the differentiation amongst current proteomic platforms and aptamers. We address these analytical considerations with respect to surveying initial data, deploying proper statistical methodologies to identify differential protein expressions, and applying datasets to discover multimarker and pathway-level findings. Additionally, we present aptamer datasets within the multi-omics landscape by exploring the intersectionality of aptamer-based proteomics amongst genomics, transcriptomics, and metabolomics, alongside pre-existing proteomic platforms. Understanding the broader applications of aptamer datasets will substantially enhance current efforts to generate translatable findings for the clinic.

20.
Aging (Albany NY) ; 14(3): 1068-1086, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35158337

RESUMO

Radiation therapy is a commonly used treatment modality for cancer. Although effective in providing local tumor control, radiation causes oxidative stress, inflammation, immunomodulatory and mitogenic cytokine production, extracellular matrix production, and premature senescence in lung parenchyma. The senescence associated secretory phenotype (SASP) can promote inflammation and stimulate alterations in the surrounding tissue. Therefore, we hypothesized that radiation-induced senescent parenchymal cells in irradiated lung would enhance tumor growth. Using a murine syngeneic tumor model of melanoma and non-small cell lung cancer lung metastasis, we demonstrate that radiation causes a significant increase in markers of premature senescence in lung parenchyma within 4 to 8 weeks. Further, injection of B16F0 (melanoma) or Lewis Lung carcinoma (epidermoid lung cancer) cells at these time points after radiation results in an increase in the number and size of pulmonary tumor nodules relative to unirradiated mice. Treatment of irradiated mice with a senolytic agent (ABT-737) or agents that prevent senescence (rapamycin, INK-128) was sufficient to reduce radiation-induced lung parenchymal senescence and to mitigate radiation-enhanced tumor growth. These agents abrogated radiation-induced expression of 12-Lipoxygenase (12-LOX), a molecule implicated in several deleterious effects of senescence. Deficiency of 12-LOX prevented radiation-enhanced tumor growth. Together, these data demonstrate the pro-tumorigenic role of radiation-induced senescence, introduces the dual TORC inhibitor INK-128 as an effective agent for prevention of radiation-induced normal tissue senescence, and identifies senescence-associated 12-LOX activity as an important component of the pro-tumorigenic irradiated tissue microenvironment. These studies suggest that combining senotherapeutic agents with radiotherapy may decrease post-therapy tumor growth.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Melanoma Experimental , Animais , Araquidonato 12-Lipoxigenase/farmacologia , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/patologia , Processos de Crescimento Celular , Senescência Celular , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...